Telegram Group & Telegram Channel
Как использовать матрицу ошибок (confusion matrix), чтобы определить производительность модели?

В задаче классификации принято называть положительным класс, который представляет для нас интерес, и отрицательным класс, который нас не интересует (условно). С учётом этого можем описать для каждого объекта в выборке четыре возможных ситуации:

▪️Модель предсказала положительную метку и угадала. Такие объекты будут относиться к true positive (TP).
▪️Модель предсказала положительную метку и ошиблась. Такие объекты будут относиться к false positive (FP).
▪️Модель предсказала отрицательную метку и угадала. Такие объекты будут относиться к true negative (TN).
▪️Модель предсказала отрицательную метку и ошиблась. Такие объекты будут относиться к false negative (FN).

Все эти четыре группы изображают в виде таблицы, которую называют confusion matrix (матрицей ошибок). Она помогает рассчитать следующие метрики, которые могут нам что-то сказать о производительности модели:

▪️Accuracy (Точность): (TP + TN) / (TP + TN + FP + FN) — общая точность модели.
▪️Precision (Точность): TP / (TP + FP) — доля правильно предсказанных положительных объектов среди всех объектов, предсказанных положительным классом.
▪️Recall (Полнота): TP / (TP + FN) — доля правильно найденных положительных объектов среди всех объектов положительного класса.
▪️F1-score: 2 * (Precision * Recall) / (Precision + Recall) — гармоническое среднее между Precision и Recall.

#машинное_обучение
👍14



tg-me.com/ds_interview_lib/514
Create:
Last Update:

Как использовать матрицу ошибок (confusion matrix), чтобы определить производительность модели?

В задаче классификации принято называть положительным класс, который представляет для нас интерес, и отрицательным класс, который нас не интересует (условно). С учётом этого можем описать для каждого объекта в выборке четыре возможных ситуации:

▪️Модель предсказала положительную метку и угадала. Такие объекты будут относиться к true positive (TP).
▪️Модель предсказала положительную метку и ошиблась. Такие объекты будут относиться к false positive (FP).
▪️Модель предсказала отрицательную метку и угадала. Такие объекты будут относиться к true negative (TN).
▪️Модель предсказала отрицательную метку и ошиблась. Такие объекты будут относиться к false negative (FN).

Все эти четыре группы изображают в виде таблицы, которую называют confusion matrix (матрицей ошибок). Она помогает рассчитать следующие метрики, которые могут нам что-то сказать о производительности модели:

▪️Accuracy (Точность): (TP + TN) / (TP + TN + FP + FN) — общая точность модели.
▪️Precision (Точность): TP / (TP + FP) — доля правильно предсказанных положительных объектов среди всех объектов, предсказанных положительным классом.
▪️Recall (Полнота): TP / (TP + FN) — доля правильно найденных положительных объектов среди всех объектов положительного класса.
▪️F1-score: 2 * (Precision * Recall) / (Precision + Recall) — гармоническое среднее между Precision и Recall.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/514

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA